44 research outputs found

    Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds

    Get PDF
    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Both mature patches and expanding areas of Juniperus thurifera forests are vulnerable to climate change but for different reasons

    No full text
    Research Highlights: Water use efficiency (WUE) varied along a gradient of Juniperus thurifera (L.) forest expansion, being higher in recently colonised areas. Background and Objectives: WUE is a classic physiological process of plants that reflects the compromise between carbon assimilation and water loss and has a profound influence on their performance in water-limited environments. Forest expansion in Mediterranean regions associated with land abandonment can influence the WUE of plants due to the existence of two opposing gradients: one of favourable–unfavourable environmental conditions and another one of increased–decreased intraspecific competition, the former increasing and the latter decreasing towards the expanding front. The main objective of this study was to elucidate how the WUE of Juniperus thurifera varied along the stages of forest expansion and to provide insight on how this variation is influenced by intraspecific competition and abiotic factors. Materials and Methods: Seventeen plots at different distances from the mature forest core were selected at three sites located in the centre of the Iberian Peninsula. For 30 individuals within each plot, we measured biometric characteristics, age, tree vigour, and C/N ratio in leaves, and the leaf carbon isotope signature (ÎŽ13C (‰)) as a proxy for WUE. Around each individual, we scored the percentage cover of bare soil, stoniness, conspecifics, and other woody species. Results: WUE of J. thurifera individuals varied along the forest expansion gradient, being greater for the individuals at the expanding front than for those at the mature forest. WUE was influenced by the cover of conspecifics, tree age, and C/N ratio in leaves. This pattern reveals that less favourable environmental conditions (i.e., rocky soils and higher radiation due to lower vegetation cover) and younger trees at the expanding front are associated with increased WUE. The increased cover of conspecifics decreases irradiance at the mature forest, involving milder stress conditions than at the expanding front. Conclusions: Lower WUE in mature forests due to more favourable conditions and higher WUE due to abiotic stress at expanding fronts revealed high constraints on water economy of this tree species in these two contrasting situations. Climate change scenarios bringing increased aridity are a serious threat to Juniperus thurifera forests, affecting both mature and juvenile populations although in different ways, which deserve further research to fully unveil.BelĂ©n Acuña-MĂ­guez, Fernando Valladares and Irene MartĂ­n-ForĂ©

    Sea level at Saint Paul Island, southern Indian Ocean, from 1874 to the present

    Get PDF
    International audienceA data archeology exercise was carried out on sea level observations recorded during the transit of Venus across the Sun observed in 1874 from Saint Paul Island (38°41â€ČS, 77°31 E) in the southern Indian Ocean. Historical (1874) and recent (1994-2009) sea level observations were assembled into a consistent time series. A thorough check of the data and its precise geodetic connection to the same datum was only possible thanks to the recent installation of new technologies (GPS buoy and radar water level sensor) and leveling campaigns. The estimated rate of relative sea level change, spanning the last 135 years at Saint Paul Island, was not significantly different from zero (−0.1 ± 0.3 mm yr−1), a value which could be reconciled with estimates of global average sea level rise for the 20th century assuming the DORIS vertical velocity estimate at Amsterdam Island (100 km distant) could be applied to correct for the land motion at the tide gauge. Considering the scarcity of long-term sea level data in the Southern Hemisphere, the exercise provides an invaluable additional observational constraint for further investigations of the spatial variability of sea level change, once vertical land rates can be determined

    Rates of sea-level change over the past century in a geocentric reference frame

    No full text
    The results from a carefully implemented GPS analysis, using a strategy adapted to determine accurate vertical station velocities, are presented. The stochastic properties of our globally distributed GPS position time series were inferred, allowing the computation of reliable velocity uncertainties. Most uncertainties were several times smaller than the 1-3 mm/yr global sea level change, and hence the vertical velocities could be applied to correct the long tide gauge records for land motion. The sea level trends obtained in the ITRF2005 reference frame are more consistent than in the ITRF2000 or corrected for Glacial-Isostatic Adjustment (GIA) model predictions, both on the global and the regional scale, leading to a reconciled global rate of geocentric sea level rise of 1.61 +/- 0.19mm/yr over the past century in good agreement with the most recent estimate
    corecore